报告主题:Linearly Stable KAM Tori for One Dimensional Forced Kirchhoff Equations
报告人:耿建生
报告时间:2020年9月25日 9:00-10:00
地点:腾讯会议 ID:712 478 783
报告摘要:We prove an abstract infinite dimensional KAM theorem, which could be applied to prove the existence and linear stability of small-amplitude quasi-periodic solutions for one dimensional forced Kirchhoff equations with Dirichlet boundary conditions \[ u_{tt}-(1+\int_{0}^{\pi} |u_x|^2 dx)u_{xx}+M_\xi u+\epsilon g(\bar{\omega}t,x) =0,\quad u(t,0)=u(t,\pi)=0,\] where $M_\xi$ is a real Fourier multiplier, $g(\bar{\omega}t,x)$ is real analytic and odd in $x$ with forced Diophantine frequencies $\bar\omega\in \R^{\nu}$, $\epsilon$ is a small parameter. The proof is based on an improved Kuksin lemma and the off-diagonal decay property of the forcing term.This is a joint work with Y. Chen.
报告人简介:耿建生,南京大学数学系教授,博士生导师,曾获教育部新世纪优秀人才,教育部自然科学奖一等奖(排名第二)。主要研究哈密顿偏微分方程的拟周期解等;其研究成果发表在GAFA、Adv.Math、Comm.Math.Phys等国际著名杂志;曾受邀去意大利、加拿大、普林斯顿高等研究所工作访问。