东南大学数学学院邀请专家申请表 | 报告人 | 朱绪鼎 | 单位 | 浙江师范大学 | |-------|--|----|----------------------------| | 报告题目 | The strong fractional choice number of graphs | | | | 报告时间 | 2020/12/19
14:00-15:00 | 地点 | 线上报告: 腾讯会议 ID: 700 950 453 | | 邀请人 | 林文松 | | | | 报告人摘要 | 简介
朱绪鼎,教授,国家高端专家,浙江师范大学特聘教授,浙江师范大学离
散数学研究中心主任,第三批国家"千人计划"入选者。1991年获加拿大
卡尔加里大学数学博士,曾担任台湾中山大学西湾讲座教授。研究专长是
图论、演算法和组合优化。在图的染色理论、结构分析、演算法等领域做
出了杰出的贡献,取得一系列重大研究成果。在国际 SCI 期刊发表论文 200
余篇。依 MathSciNet 统计,所发表论文被引用 1900 余次。H-index 为 22。
现任《Electronic J. Combinatorics》,《J. Graph Theory》,《European
J. Combin.》,《Discrete. Mathematics》,《Contrib. Discrete Math.》,
《Discuss. Math. Graph Theory Graph Theory》,《Bulletin of Academia
Sinica》,《Taiwanese Journal of Mathematics》等国际学术期刊编委。
2014年获得中国侨联第五届《中国侨界贡献奖》。 | | | | 报告简介 | An a -list assignment of a graph G is a mapping L which assigns to each vertex v of G a set $L(v)$ of a colours. A b -fold colouring of G is a mapping ϕ which assigns to each vertex v of G a set $\phi(v)$ of b colours such that for every edge uv , $\phi(u) \cap \phi(v) = \emptyset$. An (L,b) -colouring of G is a b -fold colouring ϕ of G such that $\phi(v) \subseteq L(v)$ for each vertex v . We say G is (a,b) -choosable if for any a -list assignment L of G , there is an (L,b) -colouring of G . A graph G is strongly fractional r -choosable if G is (a,b) -choosable for all positive integers a,b for which $a/b \ge r$. The strong fractional choice number of G is $ch_f^s(G) = \inf\{r : G \text{ is strongly fractional } r\text{-choosable.}\}.$ We would like to use the strong fractional choice number is as a refinement of the choice number. However, it remains unknown if $ch_f^s(G) \le ch(G)$ for every graph G . In this talk, I will survey results concerning this parameter and some open questions. The talk contains joint work with Yiting Jiang, Rongxing Xu, Xuer Li. | | |